Materials Modelling


Impacts of Materials Modelling Webinar

What is materials modelling good for?
This webinar examines the impact materials modelling makes, both on a macro-economic and organisational level. In particular, the wide range of impact types and mechanisms will be discussed, based on evidence from surveys and interviews with users. It will be argued that a much wider potential remit for modelling should be considered than is commonly done.

In the light of these impact mechanisms, ways of measuring and increasing impact are discussed. Setting and assessing impact levels is shown to be important, and in this context a maturity model will be introduced. Higher levels of maturity are associated with integration and optimisation and set the scene for modelling as a key factor impacting on digitalisation.

CEN Standard on Materials modelling – terminology, classification and metadata

The CEN (European Committee for Standardization) Workshop Agreement CWA 17284 “Materials modelling – terminology, classification and metadata”  described in an earlier post has been published. Here is the Abstract:

This CWA includes definitions of fundamental terms for the field of materials modelling and simulation. Computational materials models in this CWA are understood to be physics-based models. This CWA does not include data-based models. The definitions enable a classification of materials models. Using the entity and physics equation concepts, leads to a relatively small number of distinct materials models replacing the current situation of opacity of materials models and simulations that make the field hard to access for outsiders. This CWA also provides a systematic description and documentation of simulations including the user case, model, solver and post-processor: the “materials MOdelling DAta” (MODA). This document seeks to organize the information so that even complex simulation workflows can be conveyed more easily and key data about the models, solvers and post-processors and their implementation can be captured. A template MODA for physics-based models is described in order to guide users towards a complete documentation of material and process simulations. The CWA is based on the Review of Materials Modelling (RoMM). A MODA for data-based models can be found in the RoMM.

This document provides the basis for moving the materials modelling field up the semantic spectrum, laying the foundation for knowledge organisation achieved in many other fields (see e.g. the Osthus presentation “From Big Data to Big Analysis” given at the EMMC Workshop on Interoperability in Materials Modelling). It lays the foundation for developing and ontology of materials modelling, enabling interoperability, reasoning and knowledge extraction in the materials science domain.

EMMC Workshop on Interoperability in Materials Modelling


7-8 November 2017,  St John’s Innovation Centre, Cambridge


Materials Modelling has become an essential part of research, development, engineering and upscaling of advanced materials in a wide range of industry sectors. Its success is based on a number of breakthrough and by now well established models and software tools originating from different scientific and engineering communities. Examples are Density Functional Theory, Phase Field Models and of course continuum mechanics and fluid dynamics based model. The impact of utilising these approaches has been widely documented in case studies and impact assessments. For many industrial applications, a combination of methods must be applied hence requiring more and more integration and interoperability, both in terms of software but also scientific aspects of the workflows (i.e. how the outputs from one model connect to the physics quantities of another model). Data required for and produced by simulations need to be managed and stored with appropriate metadata in order to enable their re-use and data analytics. Integration of materials modelling into the R&D enterprise in the age of Industry 4.0 requires the whole field to step back and work together on interoperability solutions that go much beyond stringing together some workflows with syntactically based scripting. It calls for interoperability solutions that are based in semantic approaches with metadata backed up by an ontology framework.

Purpose and objective of the workshop

The purpose is to discuss recent developments in interoperability approaches in materials modelling, following on from discussions at the First EMMC International Workshop (Notes from that event will be available to workshop delegates). In particular, the workshop will focus on semantic interoperability based on a future European Materials Modelling Ontology (EMMO). Definitions of some of the terms in such an ontology are the subject of a CEN Workshop Agreement.

Communication standards between models and databases will also be discussed, including initial requirements for cataloguing simulations in data repositories, and general requirements for Translation and Training components with a view to integration into future Materials Modelling Marketplaces.

EMMC is seeking support of the wider materials modelling community for the development of a European Materials Modelling Ontology as a basis for interoperability and domain specific metadata.


Representatives from the academic and industrial materials modelling community covering different types of models and applications, database repository owners and project representatives. The workshop is limited to 50-60 experts.

Draft Agenda

7th November 2017

10:00 – 10:30      Arrival, Refreshments

10:30 -10:40       Introduction to the Workshop
Gerhard Goldbeck (Goldbeck Consulting Ltd) and Adham Hashibon (Fraunhofer IWM)

Session 1: Status and requirements for interoperability

10:40 -11:00       Data and modelling integration at Dow
Hein Koelman (Dow Chemical)

11:00- 11:20       Materials Modelling and Interoperability – Siemens PLM Vision
Stijn Donders (Siemens PLM)

11:20 – 11:40      Ontology requirements for software realisation
Wolfgang Wenzel (KIT and Nanomatch)

11:40 – 12:00      Augmenting measurements data with physico-chemical simulation for a non-road machine application
Amit Bhave (CMCL Innovations)

12:00 – 12:30      Interoperability  approaches and implementations in current EU Projects
Borek Patzak (Czech Technical University; CompoSelector Project), Adham Hashibon (Fraunhofer IWM, FORCE Project), Jesper Friis (SINTEF, NanoSim Project)

12:30 – 13:30      Lunch

Session 2: Ontologies for interoperability

13:30 – 14:00      Introduction to the Industry Ontologies Foundry
Barry Smith (University of Buffalo)

14:00 – 14:45      Big Data Transforms Into Big Analysis: The Convergence of Formal Semantics & Data Science in Life Sciences
Eric Little (Osthus)

14:45 – 15:15      Ontologies and rule-based knowledge in Knowledge-Driven Optimization
Piotr Maciol (AGH University of Science and Technology, Krakow)

15:15 – 15:45      Break

15:45 – 16:15      European Materials Modelling Ontology (EMMO)
Emanuele Ghedini (University of Bologna), Adham Hashibon (Fraunhofer IWM), Jesper Friis (SINTEF), Gerhard Goldbeck (GCL), Georg Schmitz (ACCESS), Anne de Baas (EC DG RTD NMBP)

16:15 – 17:15      Interoperability Discussion and Action planning
Moderator: Gerhard Goldbeck

19:30 – 21:30      Dinner at Hilton Hotel Cambridge                           

8th November 2017

Session 3: Data and documentation

09:00 – 09:30      Materials Modelling Data and Documentation: terminology, classification and ontology towards Digital Single Market
Anne de Baas (EC DG RTD NMBP)

09:30 – 10:00      Simulation documentation with Materials Modelling data tables (MODA): portal demo
Adham Hashibon (Fraunhofer IWM)

10:00 – 10:30      NOMAD Metadata for all
Fawzi Mohamed (Fritz-Haber-Institut and NOMAD Project)

10:30 – 11:00      Coffee break

Session 4: Materials Modelling Marketplaces

11:00 – 11:30      Workflows and data integration, vision and sustainability
Nicola Marzari (EPFL)

11:30 – 12:00      On system thinking, knowledge synthesis and data-driven analytics
Katya Vladislavleva (DataStories Int.)

12:00 – 12:30      European Materials Modelling Marketplaces
Welchy Leite Cavalcanti (Fraunhofer IFAM, VIMMP Project), Adham Hashibon (Fraunhofer IWM, MarketPlace Project), Gerhard Goldbeck (GCL), Nicola Marzari (EPFL, MaterialsCloud), Sergio Lopez Lopez (SCM, Fortissimo Project)

12:30 – 13:30      Lunch

13:30 – 14:00      Connecting to infrastructure
Jörg Meyer (Steinbuch Centre for Computing, KIT)

14:00 – 14:30      Building a materials modeling marketplace: challenges for SME’s and research organisations
Didrik Pinte (Enthought)

14:30- 15:15       Panel on Materials Modelling Marketplaces including ontology, repository, workflow management, curation and sustainability
David Cebon (Granta Design), Eric Little, Katya Vladislavleva, Welchy Leite Cavalcanti, Nicola Marzari, Adham Hashibon;
Chair: Anne de Baas

15:15 – 16:00      Marketplaces Discussion and Action planning
Moderator: Adham Hashibon

16:00 – 16:15      Closing remarks
Gerhard Goldbeck, Adham Hashibon, Anne de Baas


Organisation and contact

EMMC partner Goldbeck Consulting Ltd manages the organisation of the workshop. For further information and to register your interest in participating, please contact:

Integration of Engineering and Materials Modelling with Manufacturing Intelligence

The takeover of engineering and materials modelling software company MSC Software (“a global leader in helping product manufacturers to advance their engineering methods with simulation software and services”) by Hexagon AB (“a leading metrology and manufacturing solution specialist”) was announced in early February.  It is an interesting development for a number of reasons. It is a move that looks very much aligned with realising the opportunities often associated with the terms Industry 4.0 and Smart Manufacturing. As the president and CEO of Hexagon, Ola Rollén, pronounced: “MSC represents a game-changer in our mission to deliver actionable manufacturing intelligence, taking us another step closer to realizing our smart connected factory vision in discrete manufacturing industries such as automotive and aerospace. We can now leverage the data our MI division is generating to improve design choices and processes upstream in the workflow. 

It also clearly shows that modelling and simulation, from the part down to the material, has a big part to play in delivering on the promises of smart manufacturing. Finally, it looks lie European corporations in particular are ready to invest in this sector. The acquisition of MSC Software by Hexagon AB for $834 m follows that of the US company Accelrys (now Biovia) by the French Dassault Systemes for $750m and  major acquisitions by Siemens PLM including that of CD-adapco for $970m and of Mentor Graphics $4.5b (“a leader in electronic design automation software”). It demonstrates Europe’s strength and vision for the “digital industrial enterprise” (Siemens), i.e. informatics, modelling and simulation spanning research, development and manufacturing  across the discrete and processing industries.




The scientific software industry

We have published a report which was prepared thanks to support by Durham University. It provides an overview of the scientific software industry, with a particular emphasis on materials modelling and discussed the following topics:

  1. The structure of the software industry.
  2. Requirements for software development: in-house and through collaboration.
  3. Routes to market for scientific software, e.g. via software houses or direct licensing into specific industries.
  4. Commercialisation requirements: standards, IP ownership, licensing schemes.
  5. Warranty and liability issues.

CEN Workshop on materials modelling terminology, classification and metadata

Following the proposal by a group of European scientists involved in materials modelling CEN (the European Committee for Standardization) has announced a new workshop on the subject “Materials modelling terminology, classification and metadata”. It is based on many years of effort led by the European Commission and the European Materials Modelling Council (EMMC), as expressed in the Review of Materials Modelling (RoMM), which will be released in its sixth edition in January 2017. The aim is to agree on a terminology and classification of materials models and organise the description of materials modelling applications based on a system referred to as MODA (Materials Modelling Data). A common terminology in materials modelling should lead to simplified and much more efficient communication and lower the barrier to utilising materials modelling. The end result is the adoption of a CEN Workshop Agreement (CWA), a best practices document for further standardisation efforts and input for the development of a future certification scheme.

A New European Network to Coordinate and Support the Industrial Uptake of Materials Modelling

In recognition of the importance of materials modelling for industrial innovation and the strength of Europe, a new Horizon 2020 project has been funded to augment and further boost the actions of the European Materials Modelling Council (EMMC). The new European Materials Modelling Council Coordination and Support Action (EMMC-CSA) includes 15 partners and is coordinated by TU Wien.

Goldbeck Consulting is part of the EMMC management team and leads Work Package 2 on Interoperability and Integration of materials modelling.

For further information, see the EMMC-CSA Press Release.